Adaptive floating search methods in feature selection
نویسندگان
چکیده
Publication information: Pattem Recwnition Letters (ISSN 0167-8655). For 1999. Volume 20 is scheduled for publication. Subscription prices are available upon request from the Publisher o; from the ~ e ~ i o n a l Sales Office nearest you or from this'journal's website (http:l/ www.elsevier.nl/locate/patrec). Further information is available on this journal and other Elsevier Science products through Elsevier's website: (http://www.elsevier.nl). Subscriptions are accepted on a prepaid basis only and are entered on a calendar year basis. Issues are sent by standard mail (surface within Europe, air delivery outside Europe). Priority rates are available upon request. Claims for missing issues should be made within six months of the date of dispatch. [Note (Latin America): for orders, claims and help desk information, please contact the Regional Sales Office in New York as listed above] USA mailing notice: Pattern Recognition Letters (ISSN 0167-8655) is published monthly by Elsevier Science B. Abstract A new suboptimal search strategy for feature selection is presented. It represents a more sophisticated version of "classical" floating search algorithms (Pudil et al., 1994), attempts to remove some of their potential deficiencies and facilitates finding a solution even closer to the optimal one.
منابع مشابه
Fast SFFS-Based Algorithm for Feature Selection in Biomedical Datasets
Biomedical datasets usually include a large number of features relative to the number of samples. However, some data dimensions may be less relevant or even irrelevant to the output class. Selection of an optimal subset of features is critical, not only to reduce the processing cost but also to improve the classification results. To this end, this paper presents a hybrid method of filter and wr...
متن کاملA Random Forest Classifier based on Genetic Algorithm for Cardiovascular Diseases Diagnosis (RESEARCH NOTE)
Machine learning-based classification techniques provide support for the decision making process in the field of healthcare, especially in disease diagnosis, prognosis and screening. Healthcare datasets are voluminous in nature and their high dimensionality problem comprises in terms of slower learning rate and higher computational cost. Feature selection is expected to deal with the high dimen...
متن کاملApplying Combined Approach of Sequential Floating Forward Selection and Support Vector Machine to Predict Financial Distress of Listed Companies in Tehran Stock Exchange Market
Objective: Nowadays, financial distress prediction is one of the most important research issues in the field of risk management that has always been interesting to banks, companies, corporations, managers and investors. The main objective of this study is to develop a high performance predictive model and to compare the results with other commonly used models in financial distress prediction M...
متن کاملOptimal Feature Selection for Data Classification and Clustering: Techniques and Guidelines
In this paper, principles and existing feature selection methods for classifying and clustering data be introduced. To that end, categorizing frameworks for finding selected subsets, namely, search-based and non-search based procedures as well as evaluation criteria and data mining tasks are discussed. In the following, a platform is developed as an intermediate step toward developing an intell...
متن کاملFloating search methods in feature selection
Sequential search methods characterized by a dynamically changing number of features included or eliminated at each step, henceforth "floating" methods, are presented. They are shown to give very good results and to be computationally more effective than the branch and bound method.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pattern Recognition Letters
دوره 20 شماره
صفحات -
تاریخ انتشار 1999